

U. Amsterdam

Canadian Institute for Advanced Research

Physics for Deep Learning & & Deep Learning for Physics

Max Welling

Overview

• Part I: Deep Learning 101

• Part II: Symmetries for Deep Learning

Part III: Statistical Physics of Deep Learning

• Part IV: Deep Art

Part I: Deep Learning 101

70 Years Ago

First Neural Network: McCullogh & Pitts, 1943

50 Years Ago

5 Years Ago

Deep neural networks learn hierarchical feature representations

Explosive Growth Neural Network Capacity

Deep Convolutional Networks

• Input dimensions have "topology":

(1D, speech, 2D image, 3D MRI, 2+1D video, 4D fMRI)

Forward: Filter, subsample, filter, nonlinearity, subsample,, classify

Backward: backpropagation (propagate error signal backward)

Convolutional Network (slide borrowed from Li Deng)

CNN in Action

(Andreiy Karpathy's blog)

Example: Dermatology

Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva¹*, Brett Kuprel¹*, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶

Example: Pathology

Sport

Nieuws

Uitzendingen

IELEIEKS

AEX 0 ki

Computer kan kanker beter herkennen dan patholoog

⁽³⁾ VRIJDAG, 17:07 BINNENLAND, TECH

Beter dan de patholoog

Datzelfde principe heeft Google nu toegepast op de data van het Radboud. Het algoritme werd geprogrammeerd om kankercellen te vinden op de foto's en vervolgens aan het werk gezet. Volgens de onderzoekers haalde het algoritme een score van 89 procent, terwijl een patholoog gemiddeld 73 procent haalt op dezelfde foto's.

Example: Retinopathy

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Figure 2. Validation Set Performance for Referable Diabetic Retinopathy

UNIVERSITEIT VAN AMSTERDAM

What do these problems have in common?

1) It's the same CNN in all cases: Inception-v3

1) Object identity is translations translation, rotation, mirror invariant

Part II: Symmetries

Symmetries

• How can we improve CNNs by exploiting symmetries better ?

Taco Cohen

(Escher)

Equivariance

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Symmetry in Deep Learning

What makes CNNs so effective?

- Weight sharing: exploits translation symmetry
- Depth: exploits equivariance

Network design principle:

Equivariance to symmetry transformations

(Picasso effect: why we do not want to use invariant features)

Equivariance

Equivariance

Source: http://yann.lecun.com/exdb/lenet/index.html

Conv vs G-Conv

T.S. Cohen & M. Welling, *Group Equivariant Convolutional Networks*. ICML 2016 J. Peters & T. Cohen, Data-Efficient Deep Learning with G-CNNs, Scyfer Blog, 2016 Sander Dieleman, Jeffrey de Fauw, Koray Kavukcuoglu, Exploiting Cyclic Symmetry in Convolutional Neural Networks, ICML2016

Conv vs G-Conv

Planar Convolution

"translate filter and compute inner product"

Translation

$$T_s f(x) = f(x - s)$$

 $T_{(2,1)}$ =

Z²-Convolution

$$[f\star\psi](s)=\sum_{x\in\mathbb{Z}^2}\sum_{k=1}^K f_k(x)[T_s\psi]_k(x)$$

Group Convolution

"transform filter and compute inner product"

Transformation

$$T_r f(x) = f(r^{-1}x)$$

G-Convolution

$$[f\star\psi](g)=\sum_{x\in\mathbb{Z}^2}\sum_{k=1}^K f_k(x)[T_g\psi]_k(x)$$

Equivariance of G-Convs

$$[T_g f] \star \psi = T_g [f \star \psi]$$

T.S. Cohen & M. Welling, Group Equivariant Convolutional Networks. ICML 2016

Equivariance of G-Convs

$$[T_g f] \star \psi = T_g [f \star \psi]$$

T.S. Cohen & M. Welling, Group Equivariant Convolutional Networks. ICML 2016

The Groups p4 & p4m

Cayley Diagrams

(from Olah's blog)

Equivariance of G-Convs $[T_g f] \star \psi = T_g [f \star \psi]$

Some Results

Network	Group	CIFAR10	CIFAR10+
All-CNN	Z_2	9.44	8.86
	<i>p</i> 4	8.84	7.67
	p4m	7.59	7.04
ResNet44	Z_2	9.45	5.61
	p4m	6.46	4.94

PART III: Bayesian Deep Learning

Reasons for Bayesian Deep Learning

- Automatic model selection / pruning
- Automatic regularization
- Realistic prediction uncertainty (important for decision making)

Computer Aided Diagnosis

Autonomous Driving

Example

Increased uncertainty away from data

Bayesian Variational Posterior Inference

Deep Learning as Statistical Physics

$$\begin{aligned} & \operatorname{Energy} \mathsf{E} & \operatorname{Entropy} \mathsf{H} \\ & -F(Q(\Theta)|X) = \int d\Theta \ Q(\Theta) \left[\log(P(X|\Theta)P(\Theta)) - \log Q(\Theta) \right] \\ & = \log P(X) - KL \left[Q(\Theta) || P(\Theta|X) \right] \\ & \leq \log P(X) \end{aligned}$$

(Bishop, Pattern Recognition and Machine Learning)

Sparsifying & Compressing CNNs

w/ Karen Ullrich and Ted Meeds

- DNNs are vastly overparameterized (e.g. distillation, Bucilua et al 2006).
- Interpret variational bound as coding cost for data (minimum description length)

$$\mathcal{L}(q, \mathbf{w}) = -\mathbb{E}_q \left[\log \left(\frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{q} \right) \right] = \underbrace{\mathbb{E}_q \left[-\log p(\mathcal{D}|\mathbf{w}) \right]}_{I^E} + \underbrace{\mathrm{KL}(q||p(\mathbf{w}))}_{I^C} \\ \text{error loss } \sim \mathrm{N} \qquad \text{complexity loss } \sim \text{const.}$$

Empirical Bayes

- Simple idea: learn a soft weight sharing prior (Nowlan & Hinton 1991, Gong et al 2014)
- Fit "Mixture of Gaussians" prior to the distribution of weights (Nowlan & Hinton 1991).

$$p(\mathbf{w}) = \prod_{i=1}^{I} \sum_{j=0}^{J} \pi_j \mathcal{N}(w_i | \mu_j, \sigma_j^2)$$

- Fixed component at w=0 encouraged to be very large (large π_0).
- When training likelihood and prior jointly, the weights cluster.

Clustering and Sparsification of the Network Weights

41

Some Results

Encode cluster means Encode for each weight to which cluster it belongs

100 fold compression with almost no loss in accuracy.

Variational Dropout

Epoch: 0 Compression ratio: 1x Accuracy: 0.113

CNN filters

Animation: Molchanov, D., Ashukha, A. and Vetrov, D.

Max Welling

Animation: Molchanov, D., Ashukha, A. and Vetrov, D.

Fully connected layer

Preliminary Results

Network & size	Method	Pruned architecture	Bit-precision
LeNet-300-100	Sparse VD	512-114-72	8-11-14
784-300-100	GNJ	278-98-13	8-9-14
	GHS	311-86-14	13-11-10
LeNet-5-Caffe	Sparse VD	14-19-242-131	13-10-8-12
	GD	7-13-208-16	-
20-50-800-500	GL	3-12-192-500	-
	GNJ	8-13-88-13	18-10-7-9
	GHS	5-10-76-16	10-10-14-13
VGG	GNJ	63-64-128-128-245-155-63-	10-10-10-10-8-8-8-
		-26-24-20-14-12-11-11-15	-5-5-5-5-6-7-11
$(2 \times 64) - (2 \times 128) -$	GHS	51-62-125-128-228-129-38-	11-12-9-14-10-8-5-
-(3×256)-(8× 512)		-13-9-6-5-6-6-20	-5-6-6-8-11-17-10

Compression Rates (Error %) Model Fast Maximum $\frac{|\mathbf{w}\neq 0|}{|\mathbf{w}|}\%$ Original Error % Method Prediction Compression Pruning LeNet-300-100 DC 8.0 40 (1.6) 6(1.6)DNS 1.8 28* (2.0) SWS 4.3 1.6 12*(1.9)64(1.9)2.2 Sparse VD 84(1.8) 113 (1.8) 21(1.8)GNJ 9(1.8) 36(1.8) 58(1.8) 10.8 GHS 10.6 9(1.8) 23(1.9)59(2.0) DC LeNet-5-Caffe 6*(0.7) 39(0.7) 8.0 55*(0.9) 108(0.9) DNS 0.9 0.9 SWS 0.5 100*(1.0)162(1.0)Sparse VD 0.7 63(1.0)228(1.0) 365(1.0) 108(1.0) 361(1.0) 573(1.0) GNJ 0.9 GHS 0.6 156(1.0) 419(1.0) 771(1.0) VGG GNJ 95(8.6) 56(8.8) 6.7 14(8.6) 8.4 GHS 5.5 18(9.0) 59(9.0) 116(9.2)

(Louizos, Ullrich, Molchanov, Vetrov, Welling 2017, unpublished)

> Additional Bayesian Bonus: By monitoring posterior fluctuations of weights one can determine their fixed point precision.

Compression rate of a factor 700x with no loss in accuracy!

Part IV: Deep Art

Α

в

CN

Ν

van Gogh et al.

van Gogh et al.

CN N

John Singer Sargent "White Ships"

van Gogh et al.

CN N

van Gogh et al.

Leroy Neiman "Mickey Mantle"

CN N

Conclusions

Deep Learning is fun! (Deepdream)

- Deep Learning is a huge hammer that could be interesting to physics...
- Physics technology is now making inroads into deep learning (it's a good time to enter the field)
- We discussed:
- 1. Lie groups and symmetry transformations to understand equivariance
- 2. Variational free energies to for probabilistic / Bayesian deep learning

Acknowledgements

Google

